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Least Squares Approximation With Constraints 

By Gradimir V. Milovanovic and Staffan Wrigge 

Abstract. In this paper we study two families of functions Fe and Fo, and show how to 
approximate the functions in the interval [-1,1]. The functions are assumed to be real when 
the argument is real. We define 

Fe= {f f (-x) = f (x), f (1) O, f E L2[-1,1]} 

and 

Fc f f (f(-x) =-f(x), f(1) O, f E L2[-1,1]}. 

Let further 9il, be the set of all real polynomials of degree not higher than m such that the 
polynomials belong to the set Fe if m is even and to the set F, if m is odd. 

We determine the least squares approximation for the function f E Fe (or Fo) in the class 
'92n (or 92n + ) with respect to the norm 1f 1 = ((f' f))1/2, where the inner product is 
defined by (f, g) = J1 f(x)g(x)w(x) dx, with f, g E L2[-1,1] = L2 1, 1] and w(x)= 
(1X 2)-1/2 

We also consider the general case when f is neither an even nor an odd function but 
f E L2[-1,1] and f(-1) =f(l) = O. 

Using the theory of Gegenbauer polynomials we obtain the approximating polynomials in 
the form 

n 

(2n (x)= E dn,k (1X2 )k when f E Fe 
k=1 

and 
n 

402n+l(x)-xEen,k(1-x ) whenfeFO. 
k-1 

We apply the general theory to the functions f(x) = cos(irx/2) and f(x) = (aox), 
where a0 = {minx > 0: Jo(x)= 0). 

0. Introduction. In [12] Wrigge and Fransen considered two families of functions, 
viz., F and H, and showed how these functions can be approximated on [0, 1] by 
polynomials of the form 

k k 

E Cn, (X(l - x))n and (1 - 2x) E Cnk(x(l -x)) 
n=1 n=1 

They used the L2-norm with respect to the weight function w(x) = (x(l - x))qg 
where q E {0, 1, 2, ... }. This method of approximation can be further generalized, 
as was shown in Wrigge [11], by using Bernstein polynomials. 
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However, a better and more natural way is to use Gegenbauer polynomials 
Ckx(X) orthogonal with respect to the weight function w(x) = (1 - x2)X-l/2, 

x E [-1,1], A > -1/2. 
The families of functions to be approximated are denoted by Fe and F0 (defined 

in the abstract) which are natural extensions of F and H used by Wrigge and 
Fransen [12]. The advantage of our new method is that we can avoid the rather 
cumbersome manipulations with matrices which were found necessary in the work of 
Wrigge and Fransen. 

1. Preliminaries and Definitions. We define the Gegenbauer polynomials { Cn A(x)) 
by means of the generating function 

00 

(1 - 2xt + - ) CnA(X)t, X # 0. 
n =O 

Using this generating function and some manipulations we may prove the recurrence 
relations 

(1 1) (k + 1)Ck+l,X(x) = 2(k + X)xCkx(x) -(k + 2X - 1)Ck-lX(X) 

(k + X)CkA(x) = XCk,X+l(X) - XCk-2,X+l(X) 

2X (1 - X2)Ck, +l(X) = (2X + k)CkA(x) -(k + 1)xCk+lA(x) 

= (k + 1 + 2X)xCk+l,A(x) -(k + 2)Ck+2,X(X)- 

Starting values are given by COA(X) = 1, C1jA(X) = 2Xx. 
In the sequel we will also need the formulae 

Ck, (1) = (+ k 
- 

= (2X)k and Ckx(-X) = (1) kCkX(X). 

Of interest is the limit behavior of Ckx(x) when X -A 0, given by (see, e.g., [10, p. 
81]) 

Ck,X(X) =2 
lim - Tk(X), k = 1,2,... . 
X-* 0 X k 

where Tk(x) denotes the Chebyshev polynomial of the first kind. 
More important to us are the following two relations, since they enable us to write 

the approximating polynomials in a form similar to that used by Wrigge and 
Fransen [12], 

(1.3) C2kx(x) = C2kx(1) 2F1(-kCk + X; X + 2; 1 - 

(1.4) C2k+1,A(x) = C2k~lx(1)x2A(-kk + X + 1; X + 2; 1 _)X2 

(see, e.g., Erdelyi et al. [3, p. 176]). 
We next prove the following auxiliary result (see also a paper by Rakovich and 

Vasic [7]). 

LEMMA. Let 

2 = +r(x 1) 
hk I~k~ I =(k + X)A(X) CkT1), 

(X) 
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Then the identities 
n 

C2k, (x)C2k A(1) ( SOW = E h ~- A(X)C2nX?l(x) 
k=O 2 

and 

S1 (X) E C2k+1,JX\)JC2k+1,XA1 ) = A(X)C2n+lX+ l(x) 
k=O h2k+1 

hold. 

Proof. We could use the Christoffel-Darboux identity 

(1.5) 
E 

Ck,x(x)Ck'x(t) 
= 

q Cm+iX(X)CmX(t) CmX(x)Cm+iJ(t) 

k= hkX xt 

where qm = (m + 1)!A(X)/2X(2X)m (see, e.g., [1, p.785]) in combination with (1.2). 
However, there exists a simpler proof based on induction. The statement of the 
lemma indeed may be written in the form 

(1.6) C2nx+l(X) E 2k+X 
C2k x) 

k=O X Ck~x 

and 

(1.7) C2n+lX+l(x) = E 2 C2k+lkx(x). 
k=O x Ckl,() 

Note that (1.6) is correct for n = 1. From (1.1) we find 
= Cn~xi~x +2n + 2 + X 

C2n+2 X+1(X) = C2n,+1(X) + A C2n+2,(x) 

showing that (1.6) holds true also for n:= n + 1. Equation (1.7) is proved simi- 
larly. O 

Now let the functions f, g E L2[-1,11 = 1-1,1 and denote by 

(1.8) (f,g) = f (x)g(x)w(x) dx, 

the inner product of f and g, where w(x) = (1 - x2)X-1/2, X> -1/2. 
We introduce two families of real functions, viz. 

Fe ={f: f(-x) =f(x), f(1) =O f E L2[-1,1]} 
and 

F= {f: f (-x) = -f (x), f (1) =O f E L2[-1,1]}. 
Let further gm be the set of all real polynomials of degree not higher than m and 

such that the polynomials belong to the set Fe if m is even and to the set Fo if m is 
odd. 

We will determine the least squares approximation 02n (or 02n + 1) for the function 
f e Fe (or F0) in the class 92n (or 92n+ 1), with respect to the norm tof tn = ((f, f ))2, 
where the inner product is defined by (1.8). For this approximation we have 

(1.9) min|f-4I|=||f-42nII when f eFeF 
g2.l 

All 
= 

l ADn 
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or 

(1.10) min f lf 2n+l when f E F. 

In the general case, when f is neither an even nor an odd function, but 
f E L2[ -1, 1] and f( -1) = f(1) = 0, then the least squares approximation APm (in 
the class of real polynomials of degree < m), which satisfies the conditions 
Pm( 1) = Akm(1) = 0, is simply 

Am(X) = p2n(x) + p2n~1(x) when m = 2n + 1 

and 

{ Xm(x) -2n(x) + p2n-l(x) when m = 2n, 

where 02n and 02n~- are the solutions of (1.9) and (1.10). This can be seen by 
writing 

f(x) = 2(f(x) +f(-x)) + 2(f(x) -f(-x)).' 

Our main results are Theorems 1 and 2 of Section 2. Section 3 treats more general 
constraints. Examples are given in Section 4. 

2. Approximations With Simple Constraints. 

THEOREM 1. Iff E Fe, then the least squares approximation in the class g2n is given 
by 

n 

2n(X) = A(X) E anf k(X)(1 - X2)k, 
k=1 

where 

afl~(X)- (1)k 

n 
2m +X (X Cmo) C 

(X + 2)k+l m=O x (fC2mx)am'k(X) 

and 

a~(n)(A) | {()(n + X + 1)k(X + m <k 

M~k \(M k)m+ )k + k + 2)- (n + + 1)k + m > k 

When X = 0 we have 

(1)k n 

an,,k(0) l (2)kEl m=O (fT2m)a$,k(0) 

where 00 = 1 and 0On = 2, when n > 1. 

Note 1. The approximation with constraint p2n(X) turns out to be the truncated 
expansion in Gegenbauer polynomials with a multiple of SO(x) (= A(X)C2 n,, 1(x)) 
added to satisfy the constraint at x = 1, i.e., 

(2.1) 02n(X) = 42n(X) - 42n(() So (x)' s0(1 



LEAST SQUARES APPROXIMATION WITH CONSTRAINTS 555 

where 02n(X) is the least squares approximation without constraint given by (see, e.g., 
Rivlin [8, pp. 50-51]) 

=n"(fIC2k X) 
(2.2) +2 n(x) EC2kx(X)- 

k=O h2k 

Proof of Theorem 1. Let f E Fe and X # 0. In order to find the minimum of the 
"distance" I1f - P2nIl under the constraint 02n(l) = 0, we represent p2n as a linear 
combination of the Gegenbauer polynomials { C2kA(X)} and consider the associated 
function De, viz. 

1 n 2 n 

De | f(x) - AdkC2k,X(X) w(x) dx + vu E dkC2OkA() 
-1 ~k=O 0 = 

where , is a Lagrange multiplier, whose value we have to determine. We must have 

8De 
- = - 2(fC2j,) + 2h2idi + uC2j(1) =O, i = 0,1,.. ., n, 
8d1 

which yields 

(2.3) dih i(f 92i,X) 2I1C2i,AJ1)) i = ,,. 

From the constraint p2n(1) = 0 we find 

(42 k=O 2k k=O h2k s (1), 

where 42n is given by (2.2) and So by the lemma. Now, we note that the formula 
(2.1) follows from (2.2), (2.3) and (2.4). 

Using the representation of Gegenbauer polynomials in terms of hypergeometric 
functions (Eqs. (1.3) and (1.4)) we get 

(X)= C2m (1) 2F1(-mm + X; X +2; 1- X2) 
m=O 2m 

and 

S0(x)=S0(1) 2F1(-n n + X + 1; X + ;1-2). 

A known formula for the hypergeometric function yields 

n(X 2+ X m 1k(M'~ +Xk b2n(x) = A(AX) I ix (f i C2mX) E ( )(k X )(1 - x ) 
M=0 X ~ k=O 'kI( + 1)k 

A(X) I ( 1)k(1 -x) 2m+X (fC2m,X)( )(m + X)k 
k=O (x + ik mk 

and 

SO( x) n ( nk 1 (n + X + 1)k (l 2k 

SOl) ko (A + 2) k 

On the basis of the above and the formula (2.1), we obtain the assertion of 
Theorem 1 for X 0 0. We note that ano(X) = 0. The case X = 0 is handled by 
means of a limit process. E 
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It is of some interest to compare approximations without constraints with our 
approximations with constraints. First of all, we note that p2fl(Xk) = P2f(Xk) where 
xk is any zero of the polynomial C2,, A 1. Assuming f E Fe, define 

De* = min If-AII2 =,If-2I 112 

and 

De* = min I2f-cI2 = Ifn-cP2 II2 
0 i7r2n 

where 72n is the set of all real polynomials of degree less than or equal to 2n. We 
note that 92n C 72n. Using standard calculations and the constraint 02n(1) = 0, we 
obtain 

2 
n 

De* = (f-2n f-42n )=I|f||- =dI h 2k> 
2 

k=O 

where dk is given by (2.3) and (2.4). We also note that 
n n 

k = Ek(f9C2kX) 

k=O k=O 

an ((f 9 C2k A)) 
2 

1 C2k,X(1)(f 9 C2k X)A 

k=O h2k 2 h2k j 
Using the lemma and the value of ,u from (2.4) we obtain 

Idikh_ 

= I ((ESCk - so (1) 
k=O k=O h2k 4 

Similarly, we find 

e= (f tP2n 9 f" '2n) =1f112 E (( h2k 
k=O h2k 

Using the expressions for De* and be* we get 

* 
2so 

(1) = ((' So)) = ( 2n (1))2 D e* b e* -4s0(1) A(X)C2n,X?1(1) 

since, by the lemma, p2n(l) = (f So). Thus we see that the difference De* - De* is 
proportional to the square of the error p02n(l) - f(l) = 02n(l) 

In a similar way the following result can be proved. 

THEOREM 2. Iff E Fo then the least squares approximation in the class '92n+l is 

given by 
n 

A2n+l(x)- A(X)x E bnk(X)(1 - x2)k, 
k=1 

where 

() - 2m + A + 1 fC 

)pmn) bfl,k(X) = X + E)? __ x (f 9C2m+i /3 k~~X (X # 0) 
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and 

=n {t (0kn(n+A+2)k( + + m < k, 
R An = 

rm~kvZ )\()M +X+ l)k( X+ k+ - ) k(n +XA+2)k( X+i 2m k. 

When X = 0 we have 

bk()-2( 1) k n 
fTmi~3'() bn ,k (? X a ( f, T2 m+ 1) k(?- 

(2)k+1 m=O 

Note 2. The approximation with constraint k2n?+l(x) turns out to be the truncated 
expansion in Gegenbauer polynomials with a multiple of S1(x) (= A(X)C2"+ 1+ (X)) 
added to satisfy the constraint at x = 1, i.e., 

(P2n+l(X) = +2n+l(X) - P2n+1(1) S1(x) 

where 42n +1 is the corresponding least squares approximation without constraint. 
The approximation over the interval [0,1], which was treated in [12], may be 

obtained from Theorems 1 and 2, if we replace x by 1 - 2x. The case A = q + 2, 
where q E {0, 1, 2,... } was investigated by Wrigge and Fransen [12]. 

We have found it convenient to introduce two further notations, viz. 

dn,k(X) = A(X)an,k(X) and en,k(X) = A(X)bf k(X). 

Sometimes we will omit the variable A and write only dn k and enk. The approxi- 
mating polynomials in Theorems 1 and 2 may then be written as 

n n 

?2"(x) = E dnfk(l - x2)k and 02n+l(x) = x E enk(l - x 2)k 
k=l k=1 

3. Approximations With More General Constraints. The approach of approxima- 
tion developed in Section 2 clearly enables one to introduce more general con- 
straints, such as f(a) = +(a), or even more generally Lof = c = const, where L is a 
linear functional. 

Suppose, e.g., that f E Fe; then we could study the problem 

min 11f - 0 subject to | f(x)dx f (x) dx. 
< r= 2 - 1- 

This problem becomes very natural in case f(x) is an even probability density 
function defined on [ -1, 1]. Then of course f I 1 f(x) dx = 1. 

We will here not go too much into details but will only give some examples to 
show the complications involved. We start with the "most natural" generalization of 
the problem dealt with in Section 2, viz. 

Let f e Fe, minimize I1f - P2nII subject to k2n E 9)2n and 02n(a) = f(a), where 
a E [0, 1). 
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Put as before 42n = Ek=O dkC2kX(X) and define 

(X ()n 
2 n 

A\e | x-dkC2k,X(X) w ~)d 
U 

E dkC2k,X(1) 
-1 ~k=O k=O 

n n 

+ f( ka dkC2k,((a) f (a) 
k=O 

where , and y are Lagrange multipliers, whose values we will determine. 
In order to minimize A e we must have, for i = 0, 1, 2,.. ., n, 

= -2(fC2i A) + 2h2idi + uC2iJ1) + yC2i,(a) = 0. 

This yields 

= (2 2 h 22 h2) i=O,1,2,...,n. 

The constraints p2n(1) = 0 and 02n(a) = f(a) yield the system of equations 

A(1, 1) 2 + A(a, 1) -Y (f A(1, x)), 
(3.1) 2 2 

A(1, a) 2-+ A(a, a) Y2 =( f A(a, x)) - (a), 

where 

A(x, t) =E C2k,X(X)C2k,x(t) 

k=O h2k 

We note that A(x, t) = A(t, x). 
Since in Section 4 (Example 4.3) we will approximate f(x) = cos(7Tx/2) with the 

extra constraint 4?2n(O) = 1, it is convenient to take a closer look at the sums 
occurring in (3.1). 

From the lemma we conclude that (f, A(1, x)) = A(X)(f, C2n,A+,) and the 
Christoffel-Darboux identity [cf. (1.5)] yields 

A(x, t) = q2n+l tC2n+l1,(t) C2n+2,X(t) 
-2 t2 XC2n+l,X(X) C2n+2,X(X) 

The case x = t is handled by a limit process. Thus we get 

C2n+l,+l(t) C2n ,+l(t) IC2n+2__(t)C2n+1,_(t) 

A(t, t) = Xq2n+l C2n+2,X(t) C2n+l,(t) - 2t 

For example, if t = 0 we have 

A(xO) =Q n? ) C2n+l,?(x) and A(0,0) =Q ((1) X 

where Q = (2n + 1)(2X + 2n + 1)A(X)/(2X + 1). 
In the sequel we will have occasion to investigate another constraint, viz., for 

f E Fe n C1[-1,1] solve 

(3.2) mi~ f - +2nII |subject to g2n E 92n and +2n (1) =1(1) # 0. 
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The reason why this particular constraint is of interest is the fact that the relative 
error at x = 1 vanishes subject to the constraints given in (3.2). 

For the problem stated in (3.2) we introduce 

1 ~~~n 2 n 

=e J (f(x) - EdkC2k,X(x) w(x) dx + IL E dkC2kO() 
+ k- i~ik= )}. 

n 

+ Yi E dke2 k, X() f(1) 

k=0 

The condition a e/adi = 0 for i = 0,1,..., n, and the constraints yield the 
equations, 

ad = -2(fC2i A) + 2h2idi +K2iX(1) + ye2iX(1) = 0 
83di 

and 

A(191 + B(19 1)'Y = (f A(1, x)), ')2 2 

B(19 1) 2 + C(l , 1) 'Y = (f f B (1, x)) -f 1(1) '2 2 

where 

B(xt)= A(xt) and C(x, t)= a B(x,t)= a 
A(x, t). at a~~~~x axat 

From the lemma we get B(1, t) = So(t) = 2(X + 1)A(X)C2n-l,>+2(t). In order to 
find the sum B(x, 1), we may use the identity 

B(x, t) = qnl a (C2n+lX(t)C2n+2,X(-) XC2n+l,X(X)C2n+2,X(t) 

B~~x,2t) 1atx 2 t2 

After much calculation we find 

(3.3) B(x, 1) =2A + ((n + 1)(X + n + 1)C2n,X+1(x) (X + )C2n+2(x)) 

However, we can obtain the same result without using the Christoffel-Darboux 
identity, by simply observing that 

B(x,1) =4j_ k2 + + 
(2k + X)C2k,X(X) 

Using Eq. (1.1) and some manipulations we again obtain (3.3). 

Differentiating (3.3) with respect to x gives 

C~,)=8A (X) C(x, 1) =2X + 1 ((n + 1)(X + 1)(X + n + 1)C2n-lX+2(x) 
2X + 1 ~ ~ (X+ )( 

-(A\ + 1)(A\ + 2)C2n-l,X+3(x)). 

4. Examples. As may be seen from Theorems 1 and 2 in Section 2, a main 

difficulty when calculating the least squares approximations is to achieve high-preci- 

sion values of the inner products 

(4.1) YmX(f) = (f, Cm) =J| f(x)CmX(x)(1 
- ) dx, 
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where m is even when f E Fe and odd when f E F0. Now, we give some ways for 
the calculation of the integral (4.1). 

(a) Suppose that f(x) is analytic and that f E Fe. Then f(x) may be expanded in 
a Fourier series of the form 

00 

n=O 
and -y2m X( f ) written as 

'y2m,X(f ) E a2n+l1 C2m,AX)C( 2 
X 

2X)(11x ) dx 

Letting 

Km,X(a) = | Cm,X(x)e (1-X )/2dx 

and noting (see, e.g., Gradshteyn and Ryzhik [5, p. 830] or Erdelyi et al. [3, p. 178]) 

KmX(a) = i 2'(2X + 
m)Jm+X(a), ReX> -1/2, 

m!F(X)(2a)" 

we obtain 

?? 
1)m 2i7T(2X 

+ 2m) J 2n + 1 
Y2m,(f ) E a2n+l( l) (M )!()(n+ls Jmx ~ 2 IT 

n=O (2m)!F(X)((2n + 1)T)~ 2X + 2 

The Bessel function J2m+x(a) may be computed by Miller's algorithm (see 
Abramowitz and Stegun [1, pp. 452-453]). 

A similar formula may be obtained for Y2m+lX(f ) if f E F0 and f is analytic. 
(b) Quite another approach is the following. Let f be analytic and belong to Fe. 

Then there exists an expansion of the form 
00 

(4.2) f(x) = Y c(k)(1 - x2)k, x E [-1,1]. 
k=1 

Several different expressions for the coefficients c(k) may be obtained similar to 
those given by Wrigge and Fransen [12, pp. 568-569]. Given the expansion (4.2), 
Y2m, (f ) becomes 

00 

Y2m,(f) = E C(k)G2mk(A), 
k=m 

where 

(4.3) G2mk(X) C2MX(X)(1 x2)k+1/2 dx. 

A quick way to evaluate (4.3) is the following. We "invert" the relation (1.3) and 
write 

k 

(1 - X2)k = Y Pin ,(k)C2n ,(X) m < k. 
n=O 

Then, because of orthogonality, we get 

(4.4) G2m,k(XA) = pm,j(k)IIC2mX ,1. 
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It is also possible to expand C2m,>(x) in powers of x2 or 1 - x2 and then evaluate 
the elementary integrals that arise. The formulae we then get are, however, much 
more complicated than (4.4). 

It can be shown (see Apelblat [2, p. 189]) that 

G2mk(X) = (-)m(k )r (Fo + m)F(X + k + 1/2) m k. \m F(X)F(X + k + m +1 

Since the norm IIC2mxII is well-known, we have thus evaluated the coefficients 
mX(k), which means that we have succeeded to explicitly invert the relation (1.3). 
(c) An appropriate numerical method for the determination of the integrals 

Ymx(f ) is the application of Gauss-Gegenbauer quadrature to (4.1). Error bounds 
for Gaussian quadrature of analytic functions were developed by Gautschi and 
Varga [4] (see also Smith [9]). 

Example 4.1. f(x) = cos(,rx/2), x E [-1,1]. In this case we explicitly know that 

J C 2i(x) cos(ax)(1 - x2)Xl/2 dx = (-l) m 2 TF(2X + 2m) J2m> (a) 

Putting a = 7T/2 and X= 1/2 we get Y2m,'2(f)= 2(-1)mJ2m+1/2Q7/2). Simi- 
larly, we find 

'Y0 ( )= (f, T ') = do ( 7/2) 

Y2mo(f) = (fT2m)= 2T(-1)mJ2m(,12), m > 0. 

These expressions are then used to calculate dn k(l/2) and dnk(O) [cf. Theorem 
1]. 

The coefficients dnk(O) for n = 1,2,... , 10 are presented in Table 4.1. The 
approximations for X = 1/2 are slightly less accurate than those for X = 0. The 
corresponding absolute errors 

n 

En(X)= max f(x) - E dnf k(X)(1 - x2)k 
-l x< 1 k=1 

for X = 0 and X = 1/2, are displayed also in Table 4.1. Numbers in parentheses 
indicate decimal exponents. 

Example 4.2. f(x) = JO(aox), ao = {minx > 0: Jo(x) = 0). Accurate values of 
a0 and more generally a,, where a, = min x > 0: J,(x) = 0), are given to lOOD by 
Zironi [13, p. 335]. We have, e.g., ao = 2.40482 55576 95772 76862.... We consider 
especially the case X = 0, because in Gradshteyn and Ryzhik [5, p. 836] we find the 
prerequisite result 

I'1 _ -1/2T X i 

J1 (1 -x2) 7/2n(x)J7(ax) dx = J(v+n)/2 a/2) J(v-n)/2 a/2) 

a > 0,Rev > -n-i. 
For v = 0 and n = 2k we have 

(4.5) J11| ( x )/J0(ax)T2k(x) dx = '(-1)kJ (a/2). 
-1 

The coefficients dnk(O) n = 1, 2, ... , 10, in the approximation 
n 

JO(aox) _E dnk(0)(1 - x2) k x E [-1,1], 
k==1 
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TABLE 4.1 

n k dnk(?) en (0) n(1/2) 

1 1 0.962270459871251081530834 3.83(-2) 4.06(-2) 

2 1 0.777230028061934424939665 7.46(-4) 8.88(-4) 
2 0.222048518171179987909402 

3 1 0.785557128488924080168619 8.05(-6) 1.06(-5) 
2 0.195401796804813091176750 
3 0.019033372404547783380466 

4 1 0.785396470018426704804616 5.44(-8) 7.78(-8) 
2 0.196365747627797343360769 
3 0.017380885279431922493576 
4 0.000856845175986001941350 

5 1 0.785398174745279410389985 2.49(-10) 3.90(-10) 
2 0.196349382250011369741228 
3 0.017429981412789843352201 
4 0.000798657166080317960758 
5 0.000023804185870507082970 

6 1 0.785398163345269475623525 8.52(-13) 1.39(-12) 
2 0.196349541850150456471664 
3 0.017429251812154018298777 
4 0.ooo800116367351968067604 
5 0.000022477639259916076746 
6 0.000000448985006661571337 

7 1 0.785398163397623018186441 2.07(-15) 3.74(-15) 
2 0.196349540844962439263683 
3 0.017429258274076986064370 
4 0.000800097220913545058441 
5 0.000022506358917550590491 
6 0.0000004277766441oo699649 
7 0.000000006126860295362932 

8 1 0.785398163397447864822406 4.33(-18) 7.60(-18) 
2 0.196349540849376304037355 
3 0.017429258236243859432897 
4 0.000800097375048505408886 
5 0.000022506022623091644066 
6 0.000000428180197451435359 
7 0.000000005875760432682935 
8 0.000000000063302486389915 

9 1 0.785398163397448310505497 7.09(-21) 1.35(-20) 
2 0.196349540849362042178425 
3 0.017429258236400739881121 
4 0.000800097374211809685025 
5 0.000022506025095147191835 
6 0.000000428175937909568433 
7 0.000000005880019974549860 
8 o.oooooooooo6lol1640343838 
9 0.000000000000512426089254 

10 1 0.785398163397448309614225 8.99 (-24) 1.89(-23) 
2 0.196349540849362077472803 
3 0.017429258236400255843973 
4 o.000800097374215072453947 
5 0.000022506025082689346862 
6 o.000000428175966658441448 
7 0.000000005879979087263795 
8 o.oooooooooo6lo46686589037 
9 o.000000000000495825236265 

10 0.000000000000003337737638 
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are calculated. The corresponding absolute errors are given by 6.97(- 2), 2.70( - 3), 
6.10(-5), 8.83(-7), 8.90(-9), 6.58(-11), 3.73(-13), 1.65(-15), 6.00(-18), and 
2.53( - 20), respectively. For example, if n = 10 we have the following coefficients 
c(k) = dlo,k(O): 

c(l) = 0.624229 584847 753322 534, c(6) = 0.000014 291669 769704 969, 

c(2) = 0.312114 792423 876793 755, c(7) = 0.000000 433105 085872 767, 

c(3) = 0.057658 371084 764508 079, c(8) = 0.000000 009988 565281 248, 

c(4) = 0.005639 239014 138741 338, c(9) = 0.000000 000180 796461 075, 

c(5) = 0.000343 277682 412430 896, c(10) = 0.000000 000002 836883 322. 

We also note the following general expansion (see, e.g., Magnus et al. [6, p. 125]), 

Jv(xz) = x E ((1 - x2)) JV+n(z)(n!) 1. 

Of special interest is, of course, the case v = 0 and z = a0. For computational 
purposes we also considered the expansion 

00 

J2m(a2mx) =E C2m(k)(l - X2)k, m = 0,1,2 .... 
k=1 

Using the differential equation for J2m(z) we could prove that the coefficients 
C2m(k) satisfy the recurrence relation 

(4.6) 4(k + 2)(k + 1)C2m(k + 2) -4(k + 1)(2k + 1)C2m(k + 1) 
+ (4k2 + a2mm-4m2)C2m(k)-aa2mC2m(k- 1) = 0 k = 2,3,4,.... 

Starting values are given by 

C2m(1) = 2a2mJ2m+i(a2m), C2m(2) = 2jC2m(1), 

(4.7) - 2 a M 42 
C2m(3) = C2m(2) - 4 + a2m 4 C2m(1). 

Since (4.6), (4.7) is ill-conditioned as it stands, we had to rewrite it and could then 
use Miller's algorithm. We thus calculated Co(k) and C2(k) for k = 1, 2, ... , 70. The 
convergence was very fast. 

Example 4.3. In this example we consider f(x) = cos(S7x/2) with the extra 
constraint 02n(o) = 1. As weight function we choose w(x) = (1 - x2)-1/2, i.e., 
X = 0. We then approximate cos(S7x/2) in L2-norm (with the mentioned weight 
function) by a polynomial of the form 

n 

cosQS"x/2)- E dnk(1 - x2)k x e [-1,1], 
k=1 

where the coefficients satisfy the constraint 
n 

E dnk = 1. 
k=1 

We notice that f(l - 2x) = cos(S7(1 - 2x)/2) = sin(S7x), where x e [0,1]. The 
corresponding approximations for sin(S7x) are then of the form 

n 

sin(Q7x) _ dn k4k(x(1 - x))l . 
k=1 
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Using the result in Section 3, we obtain after much calculation 

dn= (-4) 
k 

E i +k 2k )a(n) k = 
1929 . . .. ,n, 

i=k 

where 

a(n) = Jo(,r/2) -A 

a(i) = 2(J4j(S7/2) -An), 1 , 1 .2, . 

a(i) 1= -2(J4i-2('7/2) + Bn), i = 1,2. 

The coefficients An and Bn are given by 

A = 2n + 1 - (_ )n (2J (T/2) + 4S -1) 
n 4n(n +1) 

and 

Bn = 4 ))(1 -4Un) , n 4n(n +1) 

where 
[n/2] [(n + 1)/2] 

Si= 0 Sn = E J4i(,r/2), Un = E J4i-2 (,/2). 
i=1 i=1 

Jn,, of course, denotes the Bessel function of order n. 
The coefficients dnk, n = 1,2, ... , 10, are calculated. The corresponding absolute 

errors are given by 5.60(- 2), 9.25(- 4), 9.36(- 6), 6.12(- 8), 2.78(- 10), 9.23(- 13), 
2.34( - 15), 4.66( - 18), 7.50(- 21), and 9.91( - 24), respectively. 

All calculations were performed in Q-arithmetic on a VAX 11/780 computer at 

the Institute of Earthquake Engineering and Engineering Seismology, University 
"Kiril and Metodij" Skoplje. 
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